Капиллярные трубки в холодильнике – капилляр, капиллярная трубка, дроссель, трубопровод, засор, чистка, назначение, длина, диаметр, капиллярка, капиллярный трубопровод, подбор, расчет, программа

Содержание

капилляр, холодильник, режим, принцип работы, холодильник, регулирующее устройство, дроссель, дефект, ремонт, Тольятти, сервисный центр

  • Home
  • Работа капиллярной трубки в качестве регулирующего устройства

Работа капиллярной трубки в качестве регулирующего устройства

 Капиллярную трубку устанавливают между конденсатором и испарителем. Жидкий хладагент поступает в трубку под давлением конденсации. По мере  прохождения хладагента по трубке его давление постепенно снижается и на выходе трубки соответствует давлению кипящего хладагента в испарителе.   Если размеры капиллярной трубки для данного компрессора определены точно, то весь жидкий хладагент, поступающий в испаритель, будет отсасываться   компрессором и холодильный агрегат будет работать с наибольшей эффективностью. Однако это будет лишь при определенных давлениях конденсации и  кипения хладагента,  т.е. при определенных температурных условиях работы       холодильного   агрегата.    С изменением давлений конденсации и кипения, т.е. с изменением температурных условий, эффективность работы агрегата будет снижаться. Происходит это потому, что закономерность изменения производительности компрессора и пропускной способности капиллярной трубки при изменениях давлений конденсации и кипения будет неодинакова. Рассмотрим, что будет происходить в случае изменения таких условий.

ПОВЫШЕНИЕ ТЕМПЕРАТУРЫ окружающего воздуха приведет к повышению давления конденсации, из - за чего производительность компрессора будет снижаться (большое противодавление нагнетания), а пропускная способность капиллярной трубки будет увеличиваться. При сниженной производительности компрессора он будет отсасывать из испарителя меньшее количество хладагента, что приведет к переполнению испарителя. В то же время, из - за ухудшения условий конденсации в капиллярную трубку и испаритель будут поступать вместе с жидким хладагентом также пузырьки пара. Избыток жидкого хладагента в испарителе и поступление пузырьков пара приведет к повышению давления в испарителе,  отчего повысится производительность компрессора. При этом наличие пузырьков пара в конденсаторе будет способствовать торможению потока жидкого хладагента при его поступлении и уменьшению пропускной способности капилляра. Таким образом, через некоторое время  работы агрегата в условиях повышенной температуры окружающего воздуха производительность компрессора и пропускная  способность капиллярной трубки будут снова как бы согласованы, но эффективность работы агрегата снизится. 
ПОНИЖЕНИЕ ТЕМПЕРАТУРЫ окружающего воздуха вызовет снижение давления конденсации и, следовательно, уменьшение пропускной способности капиллярной трубки и увеличение производительности компрессора. Компрессор будет отсасывать из испарителя и подавать в конденсатор хладагента больше, чем его сможет пропускать капилляр. Конденсатор начнет заполняться избыточным количеством жидкого хладагента, вследствие чего уменьшится его теплопередающая поверхность и повысится давление конденсации. Однако недостаток хладагента в испарителе приведет к понижению давления кипения, из - за чего производительность компрессора будет снижаться, а пропускная способность капилляра увеличиваться.  Следовательно, и в условиях пониженной температуры окружающего воздуха через некоторое время работы агрегата производительность компрессора и пропускная способность капиллярной трубки также окажутся согласованными между собой при ухудшенной эффективности работы данного холодильного агрегата. Из этого следует, что оптимальная холодопроизводительность агрегата с капилляром может быть получена только при определенных расчетных условиях. Во всех других случаях регулирование заполнения испарителя хладагентом будет сопровождаться соответствующими потерями холодопроизводительности.
ПРЕИМУЩЕСТВА КАПИЛЛЯРНЫХ ТРУБОК
К преимуществам капиллярных трубок по сравнению с другими дросселирующими устройствами (например, с терморегулирующими вентилями)  можно отнести : 
- простоту конструкции;
- отсутствие движущихся частей;
- надежность в работе.
Также капиллярная трубка , соединяя стороны нагнетания и всасывания, уравнивает давление в системе агрегата при его остановах ( рис. 3.17).

РИС. 3.17.  Кривые изменения давления в холодильном агрегате за цикл работы:

1- давление в капиллярной трубке;
2- давление в отсасывающей трубке.
Это снижает противодавления на поршень компрессора в момент запуска и позволяет применять электродвигатель компрессора с относительно небольшим пусковым моментом. 
Кроме того, при капиллярной трубке может быть применен двигатель компрессора с относительно меньшим пусковым моментом, так как при остановках компрессора через капилляр из конденсатора в испаритель продолжает перетекать хладагент и давление в конденсаторе снижается, почти уравновешиваясь во всей системе.
НЕДОСТАТКОМ капиллярной трубки является то, что при всяком изменении нагрузки или температуры конденсации по сравнению с расчетными она не обеспечивает возможную в этих условиях эффективность работы холодильного агрегата. 
При производстве холодильных агрегатов пропускную способность каждой капиллярной трубки проверяют по воздуху, подгоняя ее до установленной величины путем подрезки трубки по длине.


ВЛАГА В ГЕРМЕТИЧНОМ ХОЛОДИЛЬНОМ АГРЕГАТЕ
Главным источником образования большинства примесей и загрязнений рабочей среды является влага. В связи с этим по требованиям современной технологии сборки герметичных агрегатов в процессе изготовления или ремонта концентрация влаги во внутренней системе не должна

ЗАСОР КАПИЛЛЯРНОГО ТРУБОПРОВОДА
Совсем недавно отказы бытовых холодильников, вызванные засорами капиллярных трубок (КТ), почти не наблюдались. Это были единичные случаи, имеющие в своей основе "механическую" природу (мелкая металлическая стружка и др.). Увлекаемые потоком хладагента, эти частицы


1  2  3  4  5  6  7  8  9  10Источник "Холодильники от А до Я" С.Л. Корякин-Черняк

www.xn---63-mdduaoecugb2g2e.xn--p1ai

Капиллярная трубка

Что такое капиллярная трубка?

Капиллярная трубка холодильника ("капиллярка") — это дросселирующее устройство, представляющее собой трубку из меди. Диаметр трубки может варьироваться от 0,6 до 0,8 миллиметров, а длина — от 2,8 до 8,5 метров.

Какова функция капиллярной трубки в холодильнике?

Капиллярная трубка соединяет сегменты низкого и высокого давления в агрегате и регулирует подачу жидкого хладагента в испаритель (уже в нём фреон преобразуется в газообразное состояние).

Капиллярная трубка, спаянная с всасывающей трубой, образует теплообменник. Данный узел предохраняет компрессор от попадания на него жидкого хладагента (в этом отношении, функции капиллярной трубки схожи с функциями докипателя).

Каковы сильные стороны холодильников, оснащенных капиллярной трубкой?

К примеру, в сравнении с регулирующими температуру вентилями, капиллярная трубка имеет максимально простую конструкцию, лишенную подвижных частей, а значит, наименее уязвимую к механическим дефектам.

Капиллярная трубка, ввиду того, что соединяет секторы нагнетания и всасывания, стабилизирует давление в системе холодильника при остановках мотор-компрессора. Соответственно, снижается противодействие на поршень компрессора в момент старта цикла, что дает возможность оснащать современные холодильники электрическими двигателями с сравнительно малым пусковым моментом.

Есть ли минусы у капиллярки?

Капиллярная трубка не способна гарантировать точную регуляцию подачи фреона в испаритель при различных температурах эксплуатации холодильника. Соответственно, пропускную способность определяют, исходя из эксплуатационных показателей агрегата.

Какие сбои в работе холодильника связаны с капиллярной трубкой?

Самый частый и «болезненный» дефект, сопряженный с функционированием капиллярки, — её засор. До сегодняшнего дня, многие производители не обнародовали природу засоров капиллярных трубок в своих моделях (они могут быть как физическими, так и химическими). Предупредить засорение капилляра достаточно сложно, так как выявить наличие частичного засорения можно только посредством высокоточных приборов (чувствительного ротаметра). Порой засор обусловлен конструктивными особенностями холодильника, иногда — побочными эффектами применениями хладагента.

Устранить засор капиллярной трубки без привлечения специалиста возможно при наличии соответствующих навыков. В противном случае, Вы рискуете деформировать трубку и нанести агрегату еще больший ущерб.

www.domashniy-holod.ru

Засор капиллярной трубки в холодильнике

Одной из частых причин поломки холодильника является засор капиллярной трубки. Засориться капиллярная трубка может в ходе попадания мелких частиц через фильтр-осушитель. Подобная неисправность возникает, например, у холодильников Атлант МХМ-2706, МХМ-2712 с верхним расположением морозильной камеры, примерно 2000 – 2005 годов выпуска.

В результате работы мотора выделяются парафы и других компоненты, которые циркулируют по системе. Образуются отложения на стенке капилляра в виде парафина (пластилина). Внутренний диаметр капиллярной трубки частично или полностью закупоривается, т.к. диаметр трубки варьируется от доли миллиметра до пары миллиметров. Если произошел засор капиллярной трубки в холодильнике, вам нужно обратиться к опытным специалистам для проведения квалифицированного ремонта.

Основные признаки засора капиллярной трубки

Попадание в капиллярную трубку органических соединений может затруднить или полностью перекрыть циркуляцию фреона по системе. В связи с этим, производительность холодильника становится значительно ниже, система начинает сильно греться, в том числе греется и мотор-компрессор, после чего может и полностью выйти из строя. Подобным образом, небольшая на первый взгляд проблема может стать причиной серьезных неисправностей.

Для того чтобы определиться, произошел засор капиллярной трубки в холодильнике или нет, нужно проводить диагностику при помощи специального оборудования под руководством опытного специалиста. Дело в том, что подобные признаки могут возникать и при ряде других неисправностей холодильника. К примеру, засор фильтра- осушителя. Если поломка вызвана засорением капиллярной трубки, тогда проблему можно решить следующими способами.

Порядок очистки капиллярной трубки от засора

Прежде чем удалять засор капиллярной трубки в холодильнике, вам необходимо подготовить инструмент для проведения ремонта, фреон, а также оборудование, предназначенное для заправки холодильного контура хладагентом.

Вариант №1: относительно легкий метод – можно обойтись без непосредственной прочистки капиллярных труб, а просто обрезать часть, которая забилась на несколько сантиметров в месте входа. Однако данный вариант не всегда является актуальным по той причине, что засор может находиться значительно дальше входа.

Вариант №2: капиллярная трубка отрезается от фильтра, на отрезанный конец проводят припайку небольшой медной трубки 6 мм в диаметре, к которой при помощи резинового шланга со специальным манометром подключают нагнетательный вывод компрессора агрегата. В первую очередь в шланг необходимо ввести растворитель при помощи шприца. Приблизительный объем составляет 10 кубиков. После этого шланг надежно прикрепить к медной трубке и включить мотор-компрессор. Во время достижения давления приблизительно 25 атмосфер, компрессор отключается. Если трубка не прочистилась, тогда нужно провести процедуру повторно, иногда необходимо до 5-10 повторов для того чтобы провести полную очистку.

Вариант №3: Прочистка капиллярной трубки специальным прессом. Процедура продувки капилляра выполняется до полной ее очистки. Данный вариант похож на №2.

Если ни один из предложенных способов оказывается не эффективный, тогда засор представляет собой плотную пробку, которая состоит из чужеродных частиц, на вид напоминающая пластилин, тогда необходимо проводить замену капилляра. Важно подобрать правильный диаметр трубки, которая идеально подойдет к вашей модели холодильнике, в противном случае будет нарушена работа.

Какие проблемы возможны во время очистки капиллярной трубки?

Необходимо помнить о том, что при очистке капиллярной трубке во время засора, нужно менять также фильтр-осушитель, т.к. трубка по этой причине и забивается, что фильтр перестает задерживать мелкие частицы. Во время проведения всех работ с капиллярной трубкой, как и во время другого типа ремонта холодильного контура, нужно проводить заправку системы фреоном. При помощи вакуумного насоса выкачивается весь воздух из системы и проводится заполнение системы хладагентом.

Если вы не уверены в собственных силах или не имеете специальное оборудование, предназначенное для проведения ремонта холодильника, тогда ни в коем случае не нужно проводить ремонтные работы самостоятельно или обращаться к некомпетентным специалистам, а обращайтесь к нам.

Преимущества нашей компании

Диагностика не оплачивается
при ремонте

Ремонтируем холодильники
дешево

Время ремонта 20
- 50 минут

Отремонтируем
любые марки

Выезд по СПб
бесплатный

Опытный штат
по ремонту

Работаем на
перспективу

Гарантия
6 месяцев

Доверьте работу истинным профессионалам, которые выполнят работы на высоком уровне и при этом предоставят гарантию 6 месяцев. Мы применяем оборудование, детали и свой богатый опыт, который дает возможность решать даже самые сложные задачи. Вам достаточно заполнить заявку или связаться с нами любым удобным для вас способом. При заполнении заявки, максимально подробно опишите характер поломки для того чтобы наш специалист смог подготовиться и сделать ремонт холодильника на дому за один визит.

rem-holod.spb.ru

капилляр, капиллярная трубка, засор, капиллярный трубопровод, засорение, холодильник, дефект, пробка, закупорка, ремонт, технология

  • Home
  • засор капиллярного трубопровода

засор капиллярного трубопровода

Совсем недавно отказы бытовых холодильников, вызванные засорами капиллярных трубок (КТ), почти не наблюдались. Это были единичные случаи, имеющие в своей основе "механическую" природу (мелкая металлическая стружка и др.). Увлекаемые потоком хладагента, эти частицы свободно циркулировали по системе и, в случае появления неблагоприятных факторов(выброс в систему масла или продуктов его распада, изломы в проходе трубы), могли создавать незначительное сужение прохода КТ. Поскольку размер частиц засора был относительно велик, это вызывало достаточно быстрое перекрытие этого сужения прохода капиллярной трубки и серьезное нарушение циркуляции хладагента. Обеспокоенный потребитель отключал аппарат и вызывал мастера. Поскольку пробка засора не успевала значительно уплотниться или увеличиться в объеме, проблемы с устранением дефекта "засор капиллярной трубки" особых трудностей не представлял. Однако с середины 90-х годов, когда началось активное продвижение на рынок новых конструкций компрессоров с повышенным допуском нагрева и новыми марками масел, появилась холодильная техника, предназначенная для работы с хладагентом R134a. В результате отказов холодильников, вызванных засорами в КТ, стало значительно больше. В основном это было вызвано тем, что в этих аппаратах стали применяться КТ с уменьшенным внутренним диаметром (с 0,8 до 0,71...0,66 мм). Известно, что уменьшение внутреннего диаметра КТ требует улучшения качества производства холодильного агрегата. Первые несколько лет эксплуатации подобных аппаратов не выявили никаких особых отличий в работе техники, работающей на хладагентах R134а и R12, кроме того, что техника на R12 выдерживала отклонения по температуре окружающей среды в более широких пределах. Однако уже лет через пять с момента начала эксплуатации появились холодильники с дефектом "засор капиллярной трубки". Причем подобные засоры зачастую было сложно устранить - засоры в КТ не "продавливались" даже избыточным давлением в системе от 150 кгс/см2 и выше! Предвестником полного засора капиллярной трубки является появление частичного засора, который без наличия приборов (чувствительного манометра)очень тяжело диагностируется. Идеальным прибором, необходимым для качественной диагностики частичного засора капиллярной трубки, является ротаметр (расходомер, который позволяет определить расход проходящего через КТ газа в л/мин). Но они редко встречаются, и необходимость в их применении возникает не так часто. Дальнейшее изучение рассматриваемой проблемы привело автора к выводу, что далеко не всегда можно точно и однозначно сказать, что засоры в КТ вызваны конструктивными особенностями холодильных агрегатов (ХА), например, в случаях отклонения режима работы ХА от номинальных. Похоже, что этот побочный дефект вызван применением самого хладагента R134а, поскольку импортные и отечественные бытовые холодильники, работающие на других типах хладагентов подобного дефекта не имеют. Самое интересное, что производители так и не озвучили химическую или физическую природу засоров КТ в своих моделях. Было единственное упоминание по моделям холодильников Стинол с компрессорами КВО: парафинизация масел. Похоже, что этим просто некому заниматься, на первом плане у производителей стоит продажа новых моделей. А зря - мастер, знающий проблему засоров в какой-нибудь печально известной линейке холодильников, может посоветовать клиенту купить аппарат от другого производителя. Остановимся подробнее на возможных причинах засоров в КТ.

Основные причины засоров, возникающие в капиллярных трубках

Сама природа проявления засоров в КТ может иметь несколько причин. Перечислим некоторые из них:

1 Сужение геометрии внутреннего диаметра трубы как в продольном, так и поперечном сечениях.

В этом случае перед появившейся складкой (заусенцем) возможно скопление небольшого количества механической взвеси, она пропитывается вязкими составляющими масла и затем уплотняется. Как вариант, возможно простое смерзание частиц (если расположение засора находится вблизи от впрыска в испаритель). За выступающие из массы бесформенные кусочки цепляются новые соринки, и процесс идет по нарастающей. Такого рода засор тяжело продавить по ходу газа, так как впереди засора будет находиться именно сужение трубы, и подобная "пробка" будет только уплотняться. В последнее время подобное явление встречается из-за "закуса" (сужение при отрезе) кончика трубы на впрыске в испаритель при обрезании КТ изготовителем, без дальнейшей обработки торца трубы.

2 Расширение геометрии внутреннего диаметра трубы как в продольном так и поперечном сечении.
В этом случае появляется своеобразный "карман", где могут осесть при остановке движения среды относительно крупные частицы, а их выступающие кромки послужат своеобразной гребенкой для улавливания из среды других механических включений. Такого рода засор тяжело продавить в любом направлении, предпочтительнее пропитать засор моющим раствором и промывать трубу до полного удаления следов засора.

3 Появление в системе липких компонентов, например, за счет парафинизации или других эффектов разложения среды.

Выделившиеся парафины или другие компоненты, свободно циркулирующие по системе за счет миграции масла, оседают внутри полости КТ за счет резкого охлаждения у входа в испаритель (на расстоянии 20...30 см от него). Для устранения подобной пробки бывает достаточно слегка прогреть этот участок при включенном компрессоре, чтобы разность давлений при работе агрегата выдавила размягченную нагревом массу по направлению в испаритель. Состав подобных засоров условно можно классифицировать по нескольким признакам.

1 Порошок темного или серого цвета.
По разным оценкам, подобный порошок может появляться от разрушения гранул осушителя или взаимодействия материалов в системе циркуляции хладагента. Чаще всего удаляется применением пропитки засора моющим раствором с последующим чередованием плавного приложения давления с обеих сторон КТ.

2 Густая темная пластичная масса (чаще - коричневого цвета), близкая по вязкости к пластилину.
Данная масса создает наибольшие проблемы при устранении засора КТ, так как достаточно легко сминается и уплотняется в процессе попытки устранения дефекта. Похоже, что она появляется вследствие коррозии черных металлов деталей внутри системы. Если удается пропитать пробку из этой массы моющим раствором для уменьшения вязкости, "продавливают" данный засор повышенным давлением в направлении, обратному нормальному движению хладагента.

3 Хлопья темного цвета - мелкие, бесформенные или иглообразные.

Засор КТ из подобных хлопьев легко устраняется пропиткой моющим раствором с последующей продувкой избыточным давлением в направлении, обратном нормальному движению хладагента. Подобные твердые включения напоминают обычный технологический мусор (возможно, продукты износа деталей), а мягкие - более схожи с продуктами лакокрасочных материалов (в одном из источников упоминалось применение в заводских условиях специальной краски для нанесения рисунков каналов) или отходы разрушения пластиковых деталей, входящих в состав мотор-компрессора.

4 Темная масса, напоминающая по консистенции гель.
Удаление засоров из этой массы не представляет затруднений при мягком и продолжительном приложении давления с любой стороны КТ. Вероятный источник появления подобного засора - разрушение продуктов среды (парафинизация масла, химическая реакция хладагента) или взаимодействия их составляющих с деталями агрегата.

Способы устранения засоров в КТ.

Заводские технологии устранения засоров немногочисленны. Перечислим их:

1 Применение для пропитки и промывки специализированных растворов, например "жидкого осушителя".
Как утверждается, состав данных растворов не оказывает разрушительного действия на детали в составе системы циркуляции хладагента. Хочется отметить, что использование для подобных целей метанола неприменимо в связи с его высокой агрессией к материалу испарителя - алюминию.

2 Продувка системы сжатым осушенным азотом.

Азот можно подавать из баллона через редуктор в любом направлении, важно только помнить, что капиллярная трубка способна выдержать большие значения давления, чем каналы алюминиевого испарителя. Причем давление на стенки трубы будет пропорционально выше с увеличением внутреннего диаметра трубы. В этом случае играют большую роль и применяемые материалы. При подаче избыточного давления в КТ необходимо предусмотреть, чтобы в системе обязательно был раскрытый заправочный патрубок. Это необходимо для того, чтобы обеспечить сброс избыточного давления в случае прорыва газа через засор КТ в полость испарителя. При подаче давления в направлении против нормального движения хладагента (то есть через обратную трубу испарителя) важно помнить, что вначале давление воздействует на внутреннюю полость алюминиевого испарителя, а затем прикладывается к КТ.

3 Воздействие на засор масла под высоким давлением с помощью специальных гидравлических прессов.

Внешне подобные прессы напоминают обычные домкраты для легковых автомобилей. Но в отличие от последних, они оснащены удобным захватом для КТ и манометром высокого давления(до 400.600 кгс/см2). При использовании данного метода важно не сделать одну характерную для ремонтников ошибку - при продавливании засора КТ в системе для хладагента R-134а нельзя применять минеральное масло. И вообще, для прочистки КТ желательно применять такое же масло, которое заправлено в компрессор. Отметим, что внутри пресса имеется специальный предохранительный клапан, сбрасывающий давление при достижении определенной (критической) величины.

4 Замена КТ на новую.

Подобная методика в большинстве своем доступна только сервисным партнерам производителей. В технологических картах, предоставляемых производителями, указаны даже параметры КТ в зависимости от модели холодильника. Если в съемных испарителях эта операция достаточно технологична, то в современных полу-разборных конструкциях она весьма трудоемка, так как в некоторых конструкциях необходимо вначале удалять теплоизоляцию, а после производства работ восстанавливать удаленное покрытие. В этом случае, не зная точно параметров применяемой КТ, можно получить непредсказуемые результаты.

Основные требования к материалам, применяемым для устранения засоров КТ.

Рассмотрим основные требования и возможности применения материалов, используемых для устранения засоров КТ.

1 Осушенные нейтральные газы.

Их применение наиболее оптимально, но есть и ограничения. Например, использование подобных газов неэффективно при устранении "сухих" или непластичных по составу засоров большой протяженности - слишком велико сопротивление пробки засора при движении по трубкам. Помимо азота в разных источниках описывались попытки устранения засоров пропаном (хороший растворитель парафинов). Используемая для этих целей пропанбутановая смесь из бытовых отопительных баллонов технической чистоты имеет большие допуски по наличию влаги и примесей, поэтому подобное решение чревато отрицательными последствиями. К тому же подобная газовая смесь огнеопасна, а в случае удаления ее из системы необходимо предпринимать известные меры по обеспечению пожарной безопасности данной операции.

2 Применение холодильных масел при продавливании прессом.

За счет высокого давления масло может попасть в полость испарителя. Использовать минеральное масло нельзя, если система предназначена для хладагента  R-134а - неизвестно как поведет себя смесь из "родного" компрессорного масла и масла, примененного при процессе. Поэтому на этот аспект нужно обратить особое внимание.

3 Жидкие легкоиспаряющиеся растворы (растворители).

Подобные вещества легко проникают в толщу засора, снижают вязкость "пробки", легко удаляются из системы вакуумированием с продувкой. К таким можно отнести ацетон и, возможно, растворители типа 646 и им подобные. Однако ацетона класса ХЧДА (химически чистый для анализа) в открытой продаже недоступен. "Бытовой" ацетон для удаления засоров использовать проблематично, так как в его составе может быть вода.

Отдельно хочется предупредить о возможных негативных последствиях при применении для рассматриваемых целей дихлорэтана. Это вещество является хорошим растворителем пластмасс, поэтому при его использовании существует большой риск повреждения пластиковых деталей бандажа компрессора. В свою очередь, продукты разложения могут стать впоследствии основой для появления новых засоров. Кроме того, применение дихлорэтана может отрицательно сказаться на электрической прочности изоляции электродвигателя компрессора. Возможно, неплохой альтернативой могут послужить фреоны 113, 114, применяющиеся в промышленности, как обезжиривающие жидкости. Если учесть, что расход их невелик, то высокая цена не сильно повлияет на цену ремонта.

4 Жидкие нефтепродукты - керосин, солярка (применяют в прессах как рабочее тело), бензин для зажигалок.

Первые два вещества достаточно эффективны в прессах. Но они плохо испаряются, еще хуже удаляются из испарителя продувкой. Класс чистоты этих веществ может быть технический. Они имеют свойство густеть/замерзать при низкой температуре. Необходимо учесть, что эти вещества могут дать неожиданные результаты (не всегда с положительным выходом) в смеси с нефтяными маслами.

Технологические приемы по устранению засоров КТ.

При проведении операций по устранению засоров КТ важно понять суть процесса, в противном случае, например, попытки излишне ускорить процесс могут привести к уплотнению массы "пробки", что значительно усложнит устранение дефекта.

Пропитка.

Применение этого приема рассчитано на свойстве засора менять свою подвижность и пластичность в результате впитывания раствора для пропитки. Наиболее мелкие, пластичные и максимально подвижные частицы могут пройти при этом сквозь всю толщу "пробки", что позволит промыть и расширить имеющиеся каналы для прохода более крупных частиц. В свою очередь это увеличивает площадь соприкосновения препарата с оставшейся массой, что резко повышает качество пропитки наиболее удаленных от внешней поверхности слоев.

Пропитку проще всего выполнить следующим образом:

- в обычный одноразовый шприц набирают небольшое количество раствора, сам шприц одевают на КТ, и вывешивают штоком вниз;

- через заправочный патрубок создают примерно половину возможного вакуума, чтобы раствор из шприца не слишком быстро двигался в проходе капилляра;

- если раствор из шприца не впитывается, оставляют на месте шприц, разрежение (вакуум) доводят до максимально возможного уровня;

- оставляют все в подобном состоянии на несколько часов (возможно, до 24 часов), периодически контролируя уровень раствора в колбе шприца.

Вскоре после всасывания раствора в КТ систему герметизируют резиновыми патрубками от компрессоров. В этом случае раствор должен будет остановиться в капилляре, тем самым будут созданы условия для проникновения его, в том числе, в участки возможного "частичного засора". Этот прием наиболее удобен с точки зрения учета использования раствора - не из экономии, а для ограничения его количества при попадании в систему. Если раствор для пропитки всасывается из полости шприца крайне медленно или не убывает совсем, можно применить следующий способ:

- на конец КТ припаивают трубку большего диаметра длиной 150-200 мм. Ее располагают открытым концом вверх, туда и заливается нужное количество раствора, одевается муфта, постепенно на этом входе увеличивают давление;

- через заправочный патрубок создают разрежение, туда для контроля давления подключают чувствительный манометр. Если давление на линии всасывания начинает подниматься - можно сделать вывод, что жидкость просачивается в полость разрежения. Практика показала - если раствору удалось "пройтись" по полости КТ, то шансы устранения засора максимальны. После определенной выдержки, чтобы засор максимально оказался пропитан раствором, можно приступать непосредственно к продавливанию.

Продавливание.

Вариантов реализации этого приема много. Дальнейшие действия могут иметь различное развитие, в первую очередь это связано с уверенностью в качестве прогнозирования состояния засора, с опытом исполнителя, а также с наличием необходимого инструмента. Но самое главное, нельзя провоцировать появление резких движений массы засора (вследствие этого возможно появление новых уплотнений). Лучше плавно увеличивать давление газа (в направлении против нормального хода хладагента в системе) - чаще всего в "голове" засора имеется какое-то сужение прохода. Но важно помнить, что нельзя прилагать чрезмерное избыточное давление в трубках испарителя, оно имеет свои пределы (у разных производителей заявленная прочность на разрушение избыточным давлением лежит в пределах 8.15 Бар). Поэтому превышать давление выше 10 Бар не рекомендуется. Давление можно создавать как "родным" для системы фреоном, так и сжатым азотом. Нужно учитывать, что использование для подобных целей других типов фреонов нужно соотносить с их совместимостью с маслом, уже залитым в систему. В это же самое время можно со стороны КТ создать разрежение. Спустя небольшой промежуток времени (определяется опытным путем), точки приложения разрежения и избыточного давления можно поменять местами. Чаще всего после нескольких подобных попыток "расшатать" пробку, засор успешно удаляется. В тяжелых случаях "продавливают" засор в КТ с помощью специализированного пресса, способного создать избыточное давление в десятки и сотни атмосфер. Иногда "продавливание" засора можно выполнить другим способом - если обычное "расшатывание" пробки изменением вектора приложения давления не помогает, меняют фильтр-осушитель, и пробуют произвести штатную заправку. В этом случае заправку выполняют небольшими дозами с интервалами в 10.15 минут. Часто нужный эффект достигается уже через 2.3 часа.

Окончательная промывка КТ от следов загрязнений.

Чаще всего, вследствие успешного "продавливания" засоров, резкий прорыв газа / масла прочищает основной проход трубки, но на ее стенках могут еще оставаться значительные следы загрязнений, и нужно еще некоторое время для полного освобождения прохода. Иначе это в дальнейшем станет причиной для повторения дефекта. Затем прогревается испаритель до температуры +40.50°С для улучшения испарения агента, применяемого в процессе "продавливания" засора. Если применялось масло, то его лучше попытаться удалить через КТ продувкой газом в направлении против нормального движения хладагента. Следующим этапом выполняют стандартное вакуумирование, после чего заправляют систему половиной "ремонтной" дозы хладагента и включают аппарат на прогон. Заправка малой дозой хладагента активирует процесс, при котором в КТ будет циркулировать не жидкость, а парожидкостная смесь - при движении она создаст эффект, близкий к "кавитации" (т.е. бомбардировки стенок трубы и всех наслоений пузырьками газа). Подобное решение позволит произвести окончательную механическую очистку системы от загрязнений. Отметим, что небольшое давление в системе не позволит сразу ее полностью очистить. Подобная очистка - довольно длительный процесс (около суток). В это время необходимо контролировать ход процесса по шуму впрыска и давлению в системе. В этом режиме работы аппарата желательно применить реле времени, задающее время работы/паузы мотор - компрессора в соотношении 1:3.1:4 (то есть на час рабочего цикла - пауза 15.20 минут). Убедившись в устойчивой циркуляции хладагента, можно приступить к "чистовому" варианту заправки. При этом необходимо сменить фильтр-осушитель, затем выполнить продолжительное вакуумирование. Следующим этапом производят "срыв" вакуума (методом разгерметизации системы), а затем выполняют уже окончательное вакуумирование. Затем выполняют заправку системы штатной технологической дозой хладагента. Но после этого удалять с заправочного патрубка клапанную полумуфту все еще рано - лучше для полной уверенности произвести дальнейшую "промывку" КТ, дав поработать агрегату в режиме "малого холода" около суток.


Капиллярная трубка
в сборе с всасывающей трубкой служит регулирующим устройством для подачи жидкого хладагента в испаритель. Она представляет собой  медную трубку с внутренним диаметром 0,6…0,8 мм и длинной 2800…8500 мм, соединяющей стороны высокого и низкого давления в системе холодильного агрегата

нормы заправки холодильников

 


1  2  3  4  5  6  7  8  9  10
 
источник

www.xn---63-mdduaoecugb2g2e.xn--p1ai

Засор капиллярной трубки

О засорах капиллярных трубок в бытовых холодильниках

Совсем недавно отказы бытовых холодильников, вызванные засорами капиллярных трубок (КТ), почти не наблюдались. Это были единичные случаи, имеющие в своей основе "механическую" природу (мелкая металлическая стружка и др.). Увлекаемые потоком хладагента, эти частицы свободно циркулировали по системе и, в случае появления неблагоприятных факторов(выброс в систему масла или продуктов его распада, изломы в проходе трубы), могли создавать незначительное сужение прохода КТ. Поскольку размер частиц засора был относительно велик, это вызывало достаточно быстрое перекрытие этого сужения прохода капиллярной трубки и серьезное нарушение циркуляции хладагента. Обеспокоенный потребитель отключал аппарат и вызывал мастера. Поскольку пробка засора не успевала значительно уплотниться или увеличиться в объеме, проблемы с устранением дефекта "засор капиллярной трубки" особых трудностей не представлял.

Однако с середины 90-х годов, когда началось активное продвижение на рынок новых конструкций компрессоров с повышенным допуском нагрева и новыми марками масел, появилась холодильная техника, предназначенная для работы с хладагентом R-134a. В результате отказов холодильников, вызванных засорами в КТ, стало значительно больше. В основном это было вызвано тем, что в этих аппаратах стали применяться КТ с уменьшенным внутренним диаметром (с 0,8 до 0,71...0,66 мм).

Известно, что уменьшение внутреннего диаметра КТ требует улучшения качества производства холодильного агрегата. Первые несколько лет эксплуатации подобных аппаратов не выявили никаких особых отличий в работе техники, работающей на хладагентах R-134а и R-12, кроме того, 

что техника на R-12 выдерживала отклонения по температуре окружающей среды в более широких пределах. Однако уже лет через пять с момента начала эксплуатации появились холодильники с дефектом "засор капиллярной трубки". Причем подобные засоры зачастую было сложно устранить - засоры в КТ не "продавливались" даже избыточным давлением в системе от 150 кгс/см2 и выше!

Предвестником полного засора капиллярной трубки является появление частичного засора, который без наличия приборов (чувствительного манометра)очень тяжело диагностируется. Идеальным прибором, необходимым для качественной диагностики частичного засора капиллярной трубки, является ротаметр (расходомер, который позволяет определить расход проходящего через КТ газа в л/мин). Но они редко встречаются, и необходимость в их применении возникает не так часто.

Дальнейшее изучение рассматриваемой проблемы привело автора к выводу, что далеко не всегда можно точно и однозначно сказать, что засоры в КТ вызваны конструктивными особенностями холодильных агрегатов (ХА), например, в случаях отклонения режима работы ХА от номинальных. Похоже, что этот побочный дефект вызван применением самого хладагента R-134а, поскольку импортные и отечественные бытовые холодильники, работающие на других типах хладагентов подобного дефекта не имеют.

Самое интересное, что производители так и не озвучили химическую или физическую природу засоров КТ в своих моделях. Было единственное упоминание по моделям холодильников СТИНОЛ с компрессорами КВО: парафини-зация масел.

Похоже, что этим просто некому заниматься, на первом плане у 

производителей стоит продажа новых моделей. А зря - мастер, знающий проблему засоров в какой-нибудь печально известной линейке холодильников, может посоветовать клиенту купить аппарат от другого производителя.

Остановимся подробнее на возможных причинах засоров в КТ.

Основные причины засоров, возникающие в капиллярных трубках

Сама природа проявления засоров в КТ может иметь несколько причин. Перечислим некоторые из них:

1. Сужение геометрии внутреннего диаметра трубы как в продольном, так и поперечном сечениях

В этом случае перед появившейся складкой (заусенцем) возможно скопление небольшого количества механической взвеси, она пропитывается вязкими составляющими масла и затем уплотняется. Как вариант, возможно простое смерзание частиц (если расположение засора находится вблизи от впрыска в испаритель). За выступающие из массы бесформенные кусочки цепляются новые соринки, и процесс идет по нарастающей. Такого рода засор тяжело продавить по ходу газа, так как впереди засора будет находиться именно сужение трубы, и подобная "пробка" будет только уплотняться. В последнее время подобное явление встречается из-за "закуса" (сужение при отрезе) кончика трубы на впрыске в испаритель при обрезании КТ изготовителем, без дальнейшей обработки торца трубы.

2. Расширение геометрии внутреннего диаметра трубы как в продольном так и поперечном сечении

В этом случае появляется своеобразный "карман", где могут осесть при остановке движения среды относительно крупные частицы, а их выступающие кромки 

послужат своеобразной гребенкой для улавливания из среды других механических включений. Такого рода засор тяжело продавить в любом направлении, предпочтительнее пропитать засор моющим раствором и промывать трубу до полного удаления следов засора.

3. Появление в системе липких компонентов, например, за счет парафинизации или других эффектов разложения среды

Выделившиеся парафины или другие компоненты, свободно циркулирующие по системе за счет миграции масла, оседают внутри полости КТ за счет резкого охлаждения у входа в испаритель (на расстоянии 20...30 см от него). Для устранения подобной пробки бывает достаточно слегка прогреть этот участок при включенном компрессоре, чтобы разность давлений при работе агрегата выдавила размягченную нагревом массу по направлению в испаритель.

Состав подобных засоров условно можно классифицировать по нескольким признакам.

1. Порошок темного или серого цвета

По разным оценкам, подобный порошок может появляться от разрушения гранул осушителя или взаимодействия материалов в системе циркуляции хладагента. Чаще всего удаляется применением пропитки засора моющим раствором с последующим чередованием плавного приложения давления с обеих сторон КТ.

2. Густая темная пластичная масса (чаще - коричневого цвета), близкая по вязкости к пластилину

Данная масса создает наибольшие проблемы при устранении засора КТ, так как достаточно легко сминается и уплотняется в процессе попытки устранения дефекта. Похоже, что она появляется вследствие коррозии черных металлов деталей внутри системы. Если удается пропитать пробку из этой массы моющим раствором для уменьшения вязкости, "продавливают" данный засор повышенным давлением в направ

лении, обратному нормальному движению хладагента.

3. Хлопья темного цвета - мелкие, бесформенные или иглообразные

Засор КТ из подобных хлопьев легко устраняется пропиткой моющим раствором с последующей продувкой избыточным давлением в направлении, обратном нормальному движению хладагента. Подобные твердые включения напоминают обычный технологический мусор (возможно, продукты износа деталей), а мягкие - более схожи с продуктами лакокрасочных материалов (в одном из источников упоминалось применение в заводских условиях специальной краски для нанесения рисунков каналов) или отходы разрушения пластиковых деталей, входящих в состав мотор-компрессора.

4. Темная масса, напоминающая по консистенции гель

Удаление засоров из этой массы не представляет затруднений при мягком и продолжительном приложении давления с любой стороны КТ. Вероятный источник появления подобного засора - разрушение продуктов среды (па-рафинизация масла, химическая реакция хладагента) или взаимодействия их составляющих с деталями агрегата.

Способы устранения засоров в КТ

Заводские технологии устранения засоров немногочисленны. Перечислим их:

1. Применение для пропитки и промывки специализированных растворов, например "жидкого осушителя"

Как утверждается, состав данных растворов не оказывает разрушительного действия на детали в составе системы циркуляции хладагента. Хочется отметить, что использование для подобных целей метанола неприменимо в связи с его высокой агрессией к материалу испарителя - алюминию.

2. Продувка системы сжатым осушенным азотом

Азот можно подавать из баллона через редуктор в любом на

правлении, важно только помнить, что капиллярная трубка способна выдержать большие значения давления, чем каналы алюминиевого испарителя. Причем давление на стенки трубы будет пропорционально выше с увеличением внутреннего диаметра трубы.

В этом случае играют большую роль и применяемые материалы. При подаче избыточного давления в КТ необходимо предусмотреть, чтобы в системе обязательно был раскрытый заправочный патрубок. Это необходимо для того, чтобы обеспечить сброс избыточного давления в случае прорыва газа через засор КТ в полость испарителя. При подаче давления в направлении против нормального движения хладагента (то есть через обратную трубу испарителя) важно помнить, что вначале давление воздействует на внутреннюю полость алюминиевого испарителя, а затем прикладывается к КТ.

3. Воздействие на засор масла под высоким давлением с помощью специальных гидравлических прессов

Внешне подобные прессы напоминают обычные домкраты для легковых автомобилей. Но в отличие от последних, они оснащены удобным захватом для КТ и манометром высокого давления(до 400.600 кгс/см2). При использовании данного метода важно не сделать одну характерную для ремонтников ошибку - при продав-ливании засора КТ в системе для хладагента R-134а нельзя применять минеральное масло. И вообще, для прочистки КТ желательно применять такое же масло, которое заправлено в компрессор.

Отметим, что внутри пресса имеется специальный предохранительный клапан, сбрасывающий давление при достижении определенной (критической) величины.

4. Замена КТ на новую

Подобная методика в большинстве своем доступна только сервисным партнерам производителей. В технологических картах, предоставляемых производителя

ми, указаны даже параметры КТ в зависимости от модели холодильника. Если в съемных испарителях эта операция достаточно технологична, то в современных полуразборных конструкциях она весьма трудоемка, так как в некоторых конструкциях необходимо вначале удалять теплоизоляцию, а после производства работ восстанавливать удаленное покрытие. В этом случае, не зная точно параметров применяемой КТ, можно получить непредсказуемые результаты.

Основные требования к материалам, применяемым для устранения засоров КТ

Рассмотрим основные требования и возможности применения материалов, используемых для устранения засоров КТ.

1. Осушенные нейтральные газы

Их применение наиболее оптимально, но есть и ограничения. Например, использование подобных газов неэффективно при устранении "сухих" или непластичных по составу засоров большой протяженности - слишком велико сопротивление пробки засора при движении по трубкам. Помимо азота в разных источниках описывались попытки устранения засоров пропаном (хороший растворитель парафинов). Используемая для этих целей пропан-бута-новая смесь из бытовых отопительных баллонов технической чистоты имеет большие допуски по наличию влаги и примесей, поэтому подобное решение чревато отрицательными последствиями.

К тому же подобная газовая смесь огнеопасна, а в случае удаления ее из системы необходимо предпринимать известные меры по обеспечению пожарной безопасности данной операции.

2. Применение холодильных масел при продавливании прессом

За счет высокого давления масло может попасть в полость испарителя. Использовать минеральное масло нельзя, если система предназначена для хладагента 

R-134а - неизвестно как поведет себя смесь из "родного" компрессорного масла и масла, примененного при процессе. Поэтому на этот аспект нужно обратить особое внимание.

3. Жидкие легкоиспаряющиеся растворы (растворители)

Подобные вещества легко проникают в толщу засора, снижают вязкость "пробки", легко удаляются из системы вакуумировани-ем с продувкой. К таким можно отнести ацетон и, возможно, растворители типа 646 и им подобные. Однако ацетона класса ХЧДА (химически чистый для анализа) в открытой продаже недоступен. "Бытовой" ацетон для удаления засоров использовать проблематично, так как в его составе может быть вода.

Отдельно хочется предупредить о возможных негативных последствиях при применении для рассматриваемых целей дихлорэтана. Это вещество является хорошим растворителем пластмасс, поэтому при его использовании существует большой риск повреждения пластиковых деталей бандажа компрессора. В свою очередь, продукты разложения могут стать впоследствии основой для появления новых засоров. Кроме того, применение дихлорэтана может отрицательно сказаться на электрической прочности изоляции электродвигателя компрессора.

Возможно, неплохой альтернативой могут послужить фреоны 113, 114, применяющиеся в промышленности, как обезжиривающие жидкости. Если учесть, что расход их невелик, то высокая цена не сильно повлияет на цену ремонта.

4. Жидкие нефтепродукты - керосин, солярка (применяют в прессах как рабочее тело), бензин для зажигалок

Первые два вещества достаточно эффективны в прессах. Но они плохо испаряются, еще хуже удаляются из испарителя продувкой.

Класс чистоты этих веществ может быть технический. Они имеют свойство густеть/замерзать при низкой температуре. Не

обходимо учесть, что эти вещества могут дать неожиданные результаты (не всегда с положительным выходом) в смеси с нефтяными маслами.

Технологические приемы по устранению засоров КТ

При проведении операций по устранению засоров КТ важно понять суть процесса, в противном случае, например, попытки излишне ускорить процесс могут привести к уплотнению массы "пробки", что значительно усложнит устранение дефекта.

Пропитка

Применение этого приема рассчитано на свойстве засора менять свою подвижность и пластичность в результате впитывания раствора для пропитки. Наиболее мелкие, пластичные и максимально подвижные частицы могут пройти при этом сквозь всю толщу "пробки", что позволит промыть и расширить имеющиеся каналы для прохода более крупных частиц. В свою очередь это увеличивает площадь соприкосновения препарата с оставшейся массой, что резко повышает качество пропитки наиболее удаленных от внешней поверхности слоев.

Пропитку проще всего выполнить следующим образом:

- в обычный одноразовый шприц набирают небольшое количество раствора, сам шприц одевают на КТ, и вывешивают штоком вниз;

- через заправочный патрубок создают примерно половину возможного вакуума,чтобы раствор из шприца не слишком быстро двигался в проходе капилляра;

- если раствор из шприца не впитывается, оставляют на месте шприц, разрежение (вакуум) доводят до максимально возможного уровня;

- оставляют все в подобном состоянии на несколько часов (возможно, до 24 часов), периодически контролируя уровень раствора в колбе шприца.

Вскоре после всасывания раствора в КТ систему герметизируют резиновыми патрубками от 

компрессоров. В этом случае раствор должен будет остановиться в капилляре, тем самым будут созданы условия для проникновения его, в том числе, в участки возможного "частичного засора".

Этот прием наиболее удобен с точки зрения учета использования раствора - не из экономии, а для ограничения его количества при попадании в систему.

Если раствор для пропитки всасывается из полости шприца крайне медленно или не убывает совсем, можно применить следующий способ:

- на конец КТ припаивают трубку большего диаметра длиной 150-200 мм. Ее располагают открытым концом вверх, туда и заливается нужное количество раствора, одевается муфта, постепенно на этом входе увеличивают давление;

- через заправочный патрубок создают разрежение, туда для контроля давления подключают чувствительный манометр. Если давление на линии всасывания начинает подниматься - можно сделать вывод, что жидкость просачивается в полость разрежения.

Практика показала - если раствору удалось "пройтись" по полости КТ, то шансы устранения засора максимальны. После определенной выдержки, чтобы засор максимально оказался пропитан раствором, можно приступать непосредственно к продавливанию.

"Продавливание"

Вариантов реализации этого приема много. Дальнейшие действия могут иметь различное развитие, в первую очередь это связано с уверенностью в качестве прогнозирования состояния засора, с опытом исполнителя, а также с наличием необходимого инструмента. Но самое главное, нельзя провоцировать появление резких движений массы засора (вследствие этого возможно появление новых уплотнений).

Лучше плавно увеличивать давление газа (в направлении против нормального хода хладагента в системе) - чаще всего в "голове" засора имеется какое-то сужение 

прохода. Но важно помнить, что нельзя прилагать чрезмерное избыточное давление в трубках испарителя, оно имеет свои пределы (у разных производителей заявленная прочность на разрушение избыточным давлением лежит в пределах 8.15 Бар). Поэтому превышать давление выше 10 Бар не рекомендуется.

Давление можно создавать как "родным" для системы фреоном, так и сжатым азотом. Нужно учитывать, что использование для подобных целей других типов фреонов нужно соотносить с их совместимостью с маслом, уже залитым в систему.

В это же самое время можно со стороны КТ создать разрежение.

Спустя небольшой промежуток времени (определяется опытным путем), точки приложения разрежения и избыточного давления можно поменять местами. Чаще всего после нескольких подобных попыток "расшатать" пробку, засор успешно удаляется.

В тяжелых случаях "продавливают" засор в КТ с помощью специализированного пресса, способного создать избыточное давление в десятки и сотни атмосфер.

Иногда "продавливание" засора можно выполнить другим способом - если обычное "расшатывание" пробки изменением вектора приложения давления не помогает, меняют фильтр-осушитель, и пробуют произвести штатную заправку. В этом случае заправку выполняют небольшими дозами с интервалами в 10.15 минут. Часто нужный эффект достигается уже через 2.3 часа.

Окончательная промывка КТ от следов загрязнений

Чаще всего, вследствие успешного "продавливания" засоров, резкий прорыв газа/масла прочищает основной проход трубки, но на ее стенках могут еще оставаться значительные следы загрязнений, и нужно еще некоторое время для полного освобождения прохода. Иначе это в дальнейшем станет причиной для повторения дефекта.

Затем прогревается испаритель до температуры +40.50°С для улучшения испарения агента, применяемого в процессе "продавливания" засора. Если применялось масло, то его лучше попытаться удалить через КТ продувкой газом в направлении против нормального движения хладагента.

Следующим этапом выполняют стандартное вакуумирование, после чего заправляют систему половиной "ремонтной" дозы хладагента и включают аппарат на прогон.

Заправка малой дозой хладагента активирует процесс, при котором в КТ будет циркулировать не жидкость, а парожидкостная смесь - при движении она создаст эффект, близкий к "кавитации" (т.е. бомбардировки стенок трубы и всех наслоений пузырьками газа). Подобное решение позволит произвести окончательную механическую очистку системы от загрязнений. Отметим, что небольшое давление в системе не позволит сразу ее полностью очистить. Подобная очистка - довольно длительный процесс (около суток).

В это время необходимо контролировать ход процесса по шуму впрыска и давлению в системе.

В этом режиме работы аппарата желательно применить реле времени, задающее время работы/паузы мотор-компрессора в соотношении 1:3.1:4 (то есть на час рабочего цикла - пауза 15.20 минут).

Убедившись в устойчивой циркуляции хладагента, можно приступить к "чистовому" варианту заправки. При этом необходимо сменить фильтр-осушитель, затем выполнить продолжительное вакуумирование. Следующим этапом производят "срыв" вакуума (методом разгерметизации системы), а затем выполняют уже окончательное вакуумирование. Затем выполняют заправку системы штатной технологической дозой хладагента.

Но после этого удалять с заправочного патрубка клапанную по-лумуфту все еще рано - лучше для полной уверенности произвести дальнейшую "промывку" КТ, дав поработать агрегату в режиме "малого холода" около суток.

Автор: Александр Чуб (журнал "Ремонт и сервис")

xn--80agdcqu4agj.xn--p1ai

капилляр, капиллярная трубка, дроссель, трубопровод, засор, чистка, назначение, длина, диаметр, капиллярка, капиллярный трубопровод, подбор, расчет, программа

капилляр, капиллярная трубка, дроссель, трубопровод, засор, чистка, назначение, длина, диаметр, капиллярка, капиллярный трубопровод, подбор, расчет, программа
  • Home
  • капиллярная трубка.

капиллярная трубка.


Капиллярная трубка  в сборе с всасывающей трубкой служит регулирующим устройством для подачи жидкого хладагента в испаритель. Она представляет собой  медную трубку с внутренним диаметром 0,6…0,8 мм и длинной 2800…8500 мм, соединяющей стороны высокого и низкого давления в системе холодильного агрегата.  К преимуществам капиллярных трубок по сравнению с другими дросселирующими устройствами (например, с терморегулирующими вентилями) следует отнести простоту конструкции, отсутствие движущихся частей и надежность в работе. Кроме того, капиллярная трубка, соединяя стороны нагнетания и всасывания, уравнивает давление в системе агрегата при его остановках. Это снижает противодействие на поршень мотор-компрессора в момент запуска и позволяет применять электродвигатель мотор-компрессора с относительно небольшим пусковым моментом.

Недостатком капиллярной трубки является то, что она не может обеспечить хорошее регулирование подачи хладагента в испаритель при разных температурах эксплуатации холодильника. Учитывая это, пропускную способность капиллярных трубок устанавливают в зависимости от эксплуатационных характеристик холодильника. Капиллярная и всасывающая трубки, припаянные друг к другу, образуют теплообменник, который путем изменения внешних условий, уменьшает возможность попадания в компрессор жидкого хладона. Для этой же цели служит отделитель жидкости или как его еще называют – докипатель. В процессе эксплуатации, особенно в первые два-три года, в холодильных машинах появляется влага в результате выделения ее из электрической изоляции. При вскрытии машин для ремонта влага оседает на поверхностях, соприкасающихся с воздухом. Поэтому все холодильные машины включают фильтры-осушители, которые очищают хладагент и масло и служат для поглощения влаги и предохранения регулирующего устройства (капиллярной трубки) от замерзания воды в нем.
1  2  3  4  5  6  7  8  9  10

www.xn---63-mdduaoecugb2g2e.xn--p1ai

капилляр, капиллярная трубка, капиллярка, капиллярный трубопровод, холодильник, ремонт, для чего тонкая трубка в холодильнике

Капиллярная трубка  в сборе с всасывающей трубкой служит регулирующим устройством для подачи жидкого хладагента в испаритель. Она представляет собой  медную трубку с внутренним диаметром 0,6…0,8 мм и длинной 2800…8500 мм, соединяющей стороны высокого и низкого давления в системе холодильного агрегата. 

К преимуществам капиллярных трубок по сравнению с другими дросселирующими устройствами (например, с терморегулирующими вентилями) следует отнести простоту конструкции, отсутствие движущихся частей и надежность в работе. Кроме того, капиллярная трубка, соединяя стороны нагнетания и всасывания, уравнивает давление в системе агрегата при его остановках. Это снижает противодействие на поршень мотор-компрессора в момент запуска и позволяет применять электродвигатель мотор-компрессора с относительно небольшим пусковым моментом.
Недостатком капиллярной трубки является то, что она не может обеспечить хорошее регулирование подачи хладагента в испаритель при разных температурах эксплуатации холодильника. Учитывая это, пропускную способность капиллярных трубок устанавливают в зависимости от эксплуатационных характеристик холодильника. Капиллярная и всасывающая трубки, припаянные друг к другу, образуют теплообменник, который путем изменения внешних условий, уменьшает возможность попадания в компрессор жидкого хладона. Для этой же цели служит отделитель жидкости или как его еще называют – докипатель. В процессе эксплуатации, особенно в первые два-три года, в холодильных машинах появляется влага в результате выделения ее из электрической изоляции. При вскрытии машин для ремонта влага оседает на поверхностях, соприкасающихся с воздухом. Поэтому все холодильные машины включают фильтры-осушители, которые очищают хладагент и масло и служат для поглощения влаги и предохранения регулирующего устройства (капиллярной трубки) от замерзания воды в нем.


РАБОТА КАПИЛЛЯРНОЙ ТРУБКИ
Капиллярную трубку устанавливают между конденсатором и испарителем. Жидкий хладагент поступает в трубку под давлением конденсации. По мере  прохождения хладагента по трубке его давление постепенно снижается и на выходе трубки соответствует давлению кипящего хладагента в испарителе.   


1  2  3  4  5  6  7  8  9  10

источник: "Устройство и ремонт бытовых холодильников" А.В. Антипов, И.А. Дубровин

www.xn---63-mdduaoecugb2g2e.xn--p1ai